Author Affiliations
Abstract
1 Key Laboratory for Laser Plasma, Shanghai Jiao Tong University, Shanghai 200240, China
2 Key Laboratory of Micro and Nano Photonic Structures, Fudan University, Shanghai 200433, China
3 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
We propose a spatially chirped quasi-phase-matching (QPM) scheme that enables ultrabroadband second-harmonic-generation (SHG) by using a fan-out QPM grating to frequency-convert a spatially chirped fundamental wave. A “zero-dispersion” 4f system maps the spectral contents of ultrabroadband fundamental onto different spatial coordinates in the Fourier plane, where the fundamental is quasi-monochromatic locally in picosecond duration, fundamentally canceling high-order phase mismatch. A fan-out QPM grating characterized by a linear variation of the poling period along the transverse direction exactly supports the QPM of the spatially chirped beam. We theoretically demonstrate the SHG of an 810-nm, 12.1-fs pulse into a 405-nm, 10.2-fs pulse with a conversion efficiency of 77%.
nonlinear optics second-harmonic generation few-cycle pulse 
Chinese Optics Letters
2024, 22(1): 011901
作者单位
摘要
1 上海交通大学 物理与天文学院,上海 200240
2 上海无线电设备研究所,上海 201109
3 复旦大学 信息科学与工程学院,上海 200433
4 上海交通大学 李政道研究所,上海 200240
论证了单晶体光参量放大(OPA)过程在特定边界条件下满足频域宇称-时间(PT)反对称性。归一化的数值求解结果显示,OPA系统PT对称阈值点附近呈现增益跃变性质。对于存在位相失配的OPA,通过实时调控泵浦光强,即可控制系统PT对称性,论文基于相位失配OPA中可超快调控PT对称性的特性构建了超快光开关,一方面光开关与周期性幅度调制的泵浦光联合使用,可直接将连续激光转换为超短脉冲序列输出;另一方面,构建的光开关也可用于脉冲激光再压缩,有望用于中红外波等长波段超短种子源。论文提出的基于超快光开关直接产生超短脉冲序列的方案,由于不需要光学谐振腔,易于实现大于10 GHz的超高重复频率。
二阶非线性光学 光学参量放大 超短脉冲序列 非厄米哈密顿量 频域宇称时间反对称 quadratic nonlinear optics optical parametric amplification ultrashort pulse sequence non-Hermitian Hamiltonian spectral parity-time anti-symmetry 
强激光与粒子束
2023, 35(9): 091005
Author Affiliations
Abstract
School of Physics and Astronomy, Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai, China
Spatiotemporal mode-locking creates great opportunity for pulse energy scaling and nonlinear optics research in fiber. Until now, spatiotemporal mode-locking has only been realized in normal-dispersion dissipative soliton and similariton fiber lasers. In this paper, we demonstrated the first experimental realization of a spatiotemporally mode-locked soliton laser in mid-infrared fluoride fiber with anomalous dispersion. The mode-locked fluoride fiber oscillator directly generated a record pulse energy of 16.1 nJ and peak power of 74.6 kW at 2.8 μm wavelength. This work extends the spatiotemporal mode-locking to soliton fiber lasers and should have a wide interest for the laser community.
mid-infrared soliton fiber laser spatiotemporal mode-locking 
High Power Laser Science and Engineering
2023, 11(5): 05000e59
Author Affiliations
Abstract
1 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
2 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
Parametric interaction allows both forward and backward energy transfers among the three interacting waves. The back-conversion effect is usually detrimental when unidirectional energy transfer is desired. In this theoretical work, we manifest that the back-conversion effect underpins the direct generation of the picosecond pulse train without the need for a laser resonator. The research scenario is an optical parametric amplification (OPA) that consists of a second-order nonlinear medium, a quasi-continuous pump laser and a sinusoidal amplitude-modulated seed signal. The back-conversion of OPA can transfer the modulation peaks (valleys) of the incident signal into output valleys (peaks), which inherently induces spectral sidebands. The generation of each sideband is naturally accompanied with a phase shift of ±π. In the regime of full-back-conversion, the amount and amplitude of the sidebands reach the maximum simultaneously, and their phase constitutes an arithmetic sequence, leading to the production of a picosecond pulse train. The generated picosecond pulse train can have an ultrahigh repetition rate of 40 GHz or higher, which may facilitate ultrafast applications with ultrahigh speed.
picosecond pulse train quadratic parametric process sideband generation 
High Power Laser Science and Engineering
2023, 11(2): 02000e21
Author Affiliations
Abstract
1 Key Laboratory for Laser Plasmas (MOE), Collaborative Innovation Center of IFSA, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
2 Joint Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
3 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
In strong-field physics experiments with ultraintense lasers, a single-shot cross-correlator (SSCC) is essential for fast optimization of the pulse contrast and meaningful comparison with theory for each pulse shot. To simultaneously characterize an ultrashort pulse and its long pedestal, the SSCC device must have both a high resolution and a large temporal window. However, the resolution and window in all kinds of single-shot measurement contradict each other in principle. Here we propose and demonstrate a novel SSCC device with two separate measurement channels: channel-1 for the large-window pedestal measurement has a moderate resolution but a large window, while channel-2 for the ultrashort pulse measurement has a small window but a high resolution; this allows the accurate characterization of the pulse contrast in a single shot. A two-channel SSCC device with a 200-fs resolution and 114-ps window has been developed and tested for its application in ultraintense lasers at 800 nm.
pulse contrast single-shot cross-correlator ultrashort ultraintense laser 
High Power Laser Science and Engineering
2022, 10(6): 06000e43
Author Affiliations
Abstract
1 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
2 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai200240, China
Optical parametric chirped-pulse amplification is inevitably subject to high-order spatial chirp, particularly under the condition of saturated amplification and a Gaussian pump; this corresponds to an irreversible spatiotemporal distortion and consequently degrades the maximum attainable focused intensity. In this paper, we reveal that such spatial chirp distortion can be significantly mitigated in quasi-parametric chirped-pulse amplification (QPCPA) with idler absorption. Simulation results show that the quality of focused intensity in saturated QPCPA is nearly ideal, with a spatiotemporal Strehl ratio higher than 0.98. As the seed bandwidth increases, the idler absorption spectrum may not be uniform, but the Strehl ratio in QPCPA can be still high enough due to stronger idler absorption.
gain saturation quasi-parametric chirped-pulse amplification spatiotemporal distortions 
High Power Laser Science and Engineering
2022, 10(3): 03000e20
Author Affiliations
Abstract
1 School of Physics and Astronomy, Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai200240, China
2 School of Information and Electrical Engineering, Hebei University of Engineering, Handan056038, China
Dissipative solitons have been realized in mode-locked fiber lasers in the theoretical framework of the Ginzburg–Landau equation and have significantly improved the pulse energy and peak power levels of such lasers. It is interesting to explore whether dissipative solitons exist in optical parametric oscillators in the framework of three-wave coupling equations in order to substantially increase the performance of optical parametric oscillators. Here, we demonstrate a temporal-filtering dissipative soliton in a synchronously pumped optical parametric oscillator. The temporal-gain filtering of the pump pulse combined with strong cascading nonlinearity and dispersion in the optical parametric oscillator enables the generation of a broad spectrum with a nearly linear chirp; consequently, a significantly compressed pulse and high peak power can be realized after dechirping outside the cavity. Furthermore, we realized, for the first time, dissipative solitons in an optical system with a negative nonlinear phase shift and anomalous dispersion, extending the parameter region of dissipative solitons. The findings may open a new research block for dissipative solitons and provide new opportunities for mid-infrared ultrafast science.
cascading nonlinearity dissipative solitons optical parametric oscillators temporal filtering 
High Power Laser Science and Engineering
2022, 10(2): 02000e16
作者单位
摘要
1 上海交通大学 物理与天文学院 激光等离子体教育部重点实验室, 上海200240
2 上海无线电设备研究所, 上海01109
提出并研究了一种宽带、大量程、方向可控的超短脉冲群速度调控方法。利用级联光参量放大,将泵浦光时域的线性强度调制转移至啁啾信号光频域的线性位相调制,压缩后信号光脉冲将获得延时或提前。通过调控泵浦时域强度调制的斜率大小和符号,可对信号光群速度调控的量程和方向进行灵活操控。级联光参量放大过程不需要满足位相匹配,响应带宽很大,原理上支持周期量级脉冲的群速度调控。分别研究了锯齿型和高斯型脉冲泵浦的级联光参量放大过程,演示验证了该方法的调控效果。该方法可在常规非线性晶体中实施,具备应用价值。
非线性光学 超快群速度调控 超短脉冲 光参量过程 数值模拟 Nonlinear optics Ultrafast group-velocity control Ultrashort pulse Optical parametric process Numerical simulation 
光子学报
2021, 50(8): 0850212
Zhen Qiao 1†Zhenyu Wan 2†Guoqiang Xie 1,*Jian Wang 2,**[ ... ]Dianyuan Fan 1,3
Author Affiliations
Abstract
1 School of Physics and Astronomy, Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
2 Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
3 SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Optical vortex is a promising candidate for capacity scaling in next-generation optical communications. The generation of multi-vortex beams is of great importance for vortex-based optical communications. Traditional approaches for generating multi-vortex beams are passive, unscalable and cumbersome. Here, we propose and demonstrate a multi-vortex laser, an active approach for creating multi-vortex beams directly at the source. By printing a specially-designed concentric-rings pattern on the cavity mirror, multi-vortex beams are generated directly from the laser. Spatially, the generated multi-vortex beams are decomposable and coaxial. Temporally, the multi-vortex beams can be simultaneously self-mode-locked, and each vortex component carries pulses with GHz-level repetition rate. Utilizing these distinct spatial-temporal characteristics, we demonstrate that the multi-vortex laser can be spatially and temporally encoded for data transmission, showing the potential of the developed multi-vortex laser in optical communications. The demonstrations may open up new perspectives for diverse applications enabled by the multi-vortex laser.
PhotoniX
2020, 1(1): 13
作者单位
摘要
上海交通大学 物理与天文学院 激光等离子体教育部重点实验室,IFSA协同创新中心,上海,200240
文中首次提出并验证了基于腔内色散管理实现飞秒光参量振荡器(OPO)光谱净化和稳定性提升的方法。对于高功率飞秒OPO,输出脉冲通常具有随时间无序变化的宽带不规则光谱,输出功率波动较大。利用铌酸锂(LiNbO3)晶体在腔内引入额外的负色散,通过泵浦脉冲的时间滤波效应实现了干净平滑的窄光谱近转换极限的飞秒脉冲输出,光谱稳定性和功率稳定性得到了极大改善。该方法是一种实现飞秒OPO光谱净化和稳定性提升的灵活简便的方法,对于发展高功率的超短脉冲OPO具有重要的应用价值。
光参量振荡器 光谱净化 功率稳定性 色散管理 时间滤波 optical parametric oscillator spectrum cleaning power stability dispersion management temporal filtering 
红外与激光工程
2020, 49(12): 20201060

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!